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transitions will not yield a difference in the DT and 
hence only transitions involving a klassengleich or 
mixed-type symmetry reduction have to be con- 
sidered. The allowed transitions between the different 
possible DT's are derived from the ABX4 family tree 
and they are summarized in Fig. 6 where the sym- 
metrically related typologies are enclosed between 
brackets. 

Concluding remarks 

For some of the transition sequences analysed in the 
present work, the Landau theory with the tilting of 
regular octahedra as the only order parameter occur- 
ring predicts the observed second-order character. 
This supports the hypothesis that in most of these 
transitions no other major structural distortions are 
present. 

In those cases where a first-order character is found, 
either supplementary symmetry-reducing distortions 
or another possibility such as the lack of long-range 
order between octahedral layers may have to be con- 
sidered. The presence of diffuse X-ray scattering in 
RbA1F4 (Bulou et al., 1983) supports the latter 
assumption. 

For those transitions which were not mentioned in 
the discussion the second-order character has not yet 
been observed experimentally. 

Finally, it may be concluded that the mere existence 
of a group-to-subgroup relation, according to the 
Birman-Worlock theorem, between ABX4 phases 
which differ only in their tilt schemes is a sufficient 
condition for a second-order transition to be allowed. 

I thank Professor Dr A. Janner and Dr E. Govaerts 
for valuable discussions. I am very indebted to Pro- 
fessor Dr S. A. Amelinckx and Professor Dr J. Van 

Landuyt for their appreciated suggestions and the 
critical reading of the manuscript. 
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Abstract 

Heavy-atom sites in an isomorphous replacement 
derivative are usually found by inspection of a 
difference Patterson map. A systematic search pro- 
cedure is necessary in the presence of high non- 

crystallographic symmetry as in a crystalline virus. A 
reciprocal-space equivalent of the Patterson search 
procedure has been developed. Furthermore, it is 
shown that the Patterson search is closely analogous 
to the usual 'feedback' tests applied in checking a 
proposed site. The separation of self and cross vectors 
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326 COMPARISON OF VECTOR SEARCH AND FEEDBACK METHODS 

in the Patterson map is shown to have its equivalent 
in reciprocal space. The procedure was used to iden- 
tify the heavy-atom sites and the particle position in 
crystals of a human common cold virus. 

Introduction 

The classical method for solving macromolecular 
structure is the isomorphous replacement method 
(Green, Ingram & Perutz, 1954). This requires the 
initial determination of heavy-atom positions in an 
isomorphous derivative, usually by means of Patter- 
son methods (Rossmann, 1960). Once the heavy-atom 
problem has been solved for the first heavy-atom 
compound, then single-isomorphous-replacement 
(SIR) phases can be calculated (Blow & Rossmann, 
1961) and used to find lesser sites within the same 
compound or to solve the heavy-atom disposition in 
other derivatives. Generally, SIR phases are used to 
compute a difference electron density map to check 
heavy-atom sites by omitting known sites and phasing 
on tentative sites or vice versa (Dickerson, Kopka, 
Varnum & Weinzierl, 1967). This paper examines the 
relationship between the evidence for heavy-atom 
sites on the Patterson map and from feedback experi- 
ments. 

The isomorphous replacement method can often 
be aided by the presence of non-crystallographic sym- 
metry both in the determination of heavy-atom posi- 
tions (Argos & Rossmann, 1976) and for the improve- 
ment of phases (cf. Rossmann & Blow, 1963; Argos, 
Ford & Rossmann, 1975; Bricogne, 1974). This 
enhancement of the isomorphous replacement 
method is essential in the structure determination of 
spherical viruses with icosahedral 532 symmetry. 

The ideas presented in this paper arose in the 
analysis of an Au(CN)2 derivative of human rhino 
(common cold) virus strain HRV14 (Rossmann, 
Arnold, Erickson, Frankenberger, Griffith, Hecht, 
Johnson, Kamer, Luo, Mosser, Rueckert, Sherry & 
Vriend, 1985). The crystals are cubic P2~3 with 
a = 445.1 A and four virus particles per cell (Arnold, 
Erickson, Fout, Frankenberger, Hecht, Luo, Ross- 
mann & Rueckert, 1984). One-third of the virus forms 
the asymmetric unit; thus there are 20 icosahedral 
asymmetric units per crystallographic asymmetric 
unit. The molecular weight of the virus is 8.5 x 106 or 
142000 dalton per icosahedral asymmetric unit. 
However, the RNA (33% by weight) is crystal- 
lographically disordered, leaving about 94 000 dalton 
of protein structure in which to find a few Au sites. 

The Patterson search method 

The usual Patterson procedure in the solution of 
heavy atoms in a spherical-virus derivative (Argos & 
Rossmann, 1976) consists of a systematic vector 
search. The icosahedral asymmetric unit is divided 

into a grid with intervals less than one-third of the 
resolution limit of the data used in the Patterson 
calculation. The possibility of a heavy atom being in 
the position of any given grid point is then assessed 
by computing the equivalent positions in all non- 
crystallographic asymmetric units within the unit cell 
and, hence, the position of the corresponding point 
vectors. The latter are compared with the actual Pat- 
terson and the test criterion (say the sum of all 
sampled Patterson densities) is plotted on the corre- 
sponding grid point within the non-crystallographic 
asymmetric unit. A derivation of this procedure now 
follows. 

Let the real difference Patterson density be Pl(X) 
at the point x and let the test Patterson density 
(derived from point atoms) be P2(x) at the point x. 
Let the coefficients of the real difference Patterson be 
A 2 and the coefficients of the test Patterson be E2h. 
A criterion of the degree of overlap, C, based on the 
sum of the Patterson densities at all test vectors would 
be 

C = ~ PI(x)P2(x) dx, 
V 

where V is the volume of the unit cell. Therefore, 

C E 2 ~ = AbE h. (1) 
h 

Now the coefficients Eh can be computed from the 
presumed heavy-atom sites. When the presumed 
heavy-atom position on a grid point within the non- 
crystallographic asymmetric unit is multiplied by the 
non-crystallographic and crystallographic symmetry 
operators, it produces N equal sites within the unit 
cell. Let the ith site contribute ai and bi toward the 
real and imaginary parts of Eh and assume a relative 
scattering power of unity. Thus, 

E 2 = ( ~  a,)2+ ( ~  b,) 2 

N - I  N 

= N + 2  X E (a,aj+b,bj). (2) 
i = l  j = i + l  

Therefore, from (1) and (2), 

C=Y.A  N + 2  2 ~ (aiaj+b,bj) . 
h i = l  j = i + l  

Now ~,h A2N is constant, independent of the given 
test site. Hence, the criterion C can be re-defined as 

[N-1 N ] 
C=~h A2h | E E (a,aj+b,bs) • (3) 

L i=1 j = i + l  

Thus, computation of C from (3), for each test site 
in turn, is equivalent to the usual Patterson search 
procedure based on sampling the Patterson map at 
point vectors. 
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The single isomorphous difference Fourier synthesis 

The phase probability distribution for a structure 
factor of a single isomorphous derivative has a mirror 
plane along the structure-factor direction of the 
heavy-atom contribution (fe i~) (Fig. 1). Thus if 

(a) IF~l>lF,~l, ~=~+~r  
( A -  IF~,l-IF~l is negative)(Fig, la) 

o r  

(b) IF~l> (F~ +f2)t/2, t~ = ~p 

(A = IF~I-IFNI is positive) (Fig. lb),  

where FN and Fn are the native and heavy-atom- 
derivative structure factors and a is the phase of FN. 
The corresponding Fourier terms in the SIR 
difference density will, therefore, be 

(a) -IAI cos (27rh.x-q~-~r)  

and 

(b) +lal cos (27rh.x-tp).  

That is, the term will be IAI cos (2~rh.x-  q~) for both 
cases. Thus, in general and when Friedel's law holds, 
the SIR difference Fourier synthesis can be represen- 
ted as 

p(x) - Y. I Ahl COS (2=h.x--,ph), (4) 
h 

which is independent of the sign of the differences, 
A. This is somewhat surprising as the SIR map is 
nominally a phased Fourier summation, not a Patter- 
son. However, there are a few intermediate cases 
where 

IFNI<IFHI and IF~l<(F%+f2) 1/=, 
which will have negative terms in the SIR difference 

7 _tt ", 
/ f j ~ r  ~,, x 

( a )  (b)  

Fig. 1. Diagram for the phase solution of a SIR derivative. The 
two alternative solutions for the phase relationship FH = FN + f 
are shown as a triangle with continuous lines and as a triangle 
with dashed lines. FN, Fn and f are the structure factors for the 
native, heavy-atom derivative and heavy atoms alone, a is the 
phase of FN and tp is the phase of f. (a) IFNI > IFHI where 
a---tp+180 °. (b)IFNI<IFHI where a=~p. 

Fourier synthesis. The sign of these terms will, 
however, be uncertain owing to inaccuracy in the 
relative scaling of the IFNI, IF,~l and Ifl amplitudes. 
That is, the sign of the A term is uncertain when IAI 
is small. However, as these terms will not contribute 
significantly to the total Fourier summation (4), this 
uncertainty is of little consequence. Nevertheless, it 
may be useful to multiply IAI by a figure of merit, m, 
which is dependent on the relative sizes of lFNI, I F,,I 
and ]fl (Appendix). 

Feedback electron density 

Let us suppose that a systematic Patterson search has 
been performed for all physically reasonable heavy- 
atom sites within the non-crystallographic asym- 
metric unit of an icosahedral virus crystal unit cell. 
However, the Patterson search function yields only 
a set of possible sites, rather than one or two outstand- 
ing sites. A way of testing the veracity of any one site 
is to use some of these sites for phasing a SIR 
difference Fourier synthesis and observing the 
appearance of other sites, hopefully consistent with 
the non-crystallographic symmetry. Alternatively, a 
specific site can be tested by omitting one of the J 
non-crystallographically related sites. The height of 
the difference Fourier synthesis can then be tested at 
the anticipated site of the omitted atom. This pro- 
cedure can be done in J different ways. The criterion, 
S, for the quality of a proposed heavy-atom site at 
(x, y, z) can then be defined as 

J 

S(x, y, z)= ~ pj, (5) 
j = l  

where pj is the density at atom j, an atom not used 
to compute the phase calculations. But from (4) 
(neglecting the few cases where the Fourier 
coefficients are small and negative), 

Pj~E ([Aml)h cos (27rhxj- ~o#j), (6) 
h 

where ~p#~ is the SIR phase of reflection h computed 
on the basis of the J non-crystallographically related 
sites but omitting the atom at xj. Therefore from (5) 
and (6), 

S(x, y, z) = Y. (Iztml)h 
h 

x _ (cos 2whxj cos ~oej + sin 2whxj sin ~oej) . 
j = l  

Now, if the real and imaginary components of the 
ith heavy-atom contribution are ai and bi, then 

cos~o~j=(1/f,~j) Y. a, and sin~oej=(1/fj) 2 b,, 
i~ j  i ~ j  

where 
1'2 
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Also, by definition, 

cos 2zrhx~ = aj and sin 21rhxj = bj. 

With the assumption that Ifl ---f#~ for all j, particularly 
where J is large, then 

= [ ~ (  Jai+bJY~,~Jb')] S(x, y, z) Z (IAm/fl)h at ,~Z 
h 

= 2 Z (lam/fl)h (a~aj + bib~) , (7) 
h L i = l  j = i + l  

which is an expression very similar to (3) derived 
from considerations of Patterson searches. Thus, 
difference Patterson searches and feedback experi- 
ments based on SIR difference Fourier maps should 
give roughly equivalent results. The principal 
differences are: 

(1) The Patterson search depends on a convolution 
of a point Patterson with a real Patterson. Representa- 
tion of the point Patterson with a Fourier requires an 
infinite summation. However, only those terms for 
which there is an observed isomorphous difference 
can be included in the computation of C in (3). 

(2) The effect of using coefficients A 2 in (3) or 
IAm/fl in (7). However, the behavior of m (Appen- 
dix) in (7) will, to a large extent, compensate for the 
squared expression in (3). 

Computation of (7) will be rather unstable owing 
to the factor Ifl in the denominator of the Fourier 
coefficients as the coefficients for those terms with Ifl 
small might dominate the summation. In theory, this 
would be compensated by the necessary small IAI 
terms when Ifl is small. In practice, I,al may be larger 
due to experimental error in measuring small differen- 
ces. This can be controlled by using the Fourier 
coefficients as Am in (7) and setting m small whenever 
f is small (Appendix). 

Searching for heavy-atom sites in the 
presence of known sites 

Once one or more sites are known, the conventional 
procedure is to compute a SIR difference Fourier 
map, based on phasing from the known atoms, in 
order to ascertain whether there are other sites. This 
has its analogue in a feedback search procedure. 
However, a feedback procedure has the advantase of 
being able to use all but one of the non-crystal- 
lographically-related sites for additional phase infor- 
mation. From (4) we have 

p ( x ) - E  lahl cos 
h 

= ~ [ Ah](COS 2 ~h. x cos tph + sin 27rh. x sin ~Ph). 
h 

Now let A h and B h be the real and imaginary com- 
ponents of structure factors due to the known atoms 
alone. Also assume equal occupancy for the known 

sites and the current test site. Hence, the electron 
density at the jth non-crystallographically-related 
search site will be given by 

P(Xj) = ~, lAm/flh[COS 27rh.xj(a + ~, ai) 
h i # j  

+sin 2zrh.xj(B+ ~ b i ) ]  
i # j  

on weighting by a figure of merit and on computing 
phases based on the known atoms plus all but the j th 
non-crystallographically-related test sites. Therefore, 

p(xj)=~[Am/f,h[aj(A+ ~ a,)+b~(B+ ~ b,)]. 
h i # j  i # j  

If then the test criterion, S, is given by (5) 

S(x,y,z)=~[Am/flh[aj(A+ ~ a,) 
j h i # j  

Now if 
~aj=a and Y~bj=b, 
J J 

it follows that 

S(x, y, z) = Zh [Arn/f[h[ (Aa + Bb) 

+ E E (a,aj + b,bj) ]. 
i j 
i # j  

(8) 

.Hence, as before, 
given by 

C(x, y, z ) = ~  A2[(A2+ B2)+~, (a2+ b 2) 

using (1), the criterion C will be 

+ E E ( a,aj + b,b~) ]. 
i j 

Again, as before, the quantities (A2+B 2) and (a2+ 
b 2) will be constant and, therefore, independent of 

This is a more general form of (7) that includes the 
additional (Aa + Bb) term due to the known heavy- 
atom sites. 

As before, the same expression can be readily 
approached from the point of view of a Patterson 
search procedure. The coefficients of the point Patter- 
son synthesis will now be given by (assuming equal 
occupancy for the test and search sites) 

E 2= A + ~ a ,  + B+Y,b, 
i i 
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the currently assumed test site. Hence, the test 
criterion can be written as 

C(x, Y, Z) = ~h A2h[ (Aa + Bb)+ Y~ ~, (a,aj + b, bj) ], (9) 
i j 

which is closely similar to (8) derived from feedback 
considerations. 

The advantage of the feedback computations in 
reciprocal space or the Patterson search method over 
the classical SIR difference electron density is that 
the phasing effect of the current test site can be 
included along with the phasing effect of the 'known' 
sites. Therefore, if the 'known' sites are themselves 
tentative, the joint phasing effect will have greater 
power than is exhibited in the SIR Fourier. In other 
words: - 

(1) the SIR Fourier series is equivalent to the com- 
putation of 

P(x, y, z)=~, A2h(Aa + Bb), 
h 

where A, B are the contributions of the known sites 
and a, b are the contributions of a test site at (x, y, z) 
and its symmetry-related positions; 

(2) the Patterson function (or reciprocal-space 
feedback experiment), when based on only one test 
site, is based on the terms 

Q ( x, y, z)= X A2 ~, ~'. ( a,aj + b,bj ) , 
h i j 

where a~, bi are the contribution of a test site at the 
ith symmetry-equivalent position x,y,z; and 

(3) the Patterson function (or reciprocal-space 
feedback) is based on the sum 

C(x, y, z )=  P(x, y, z)+ Q(x, y, z) 

when one or more sites are already tentatively known. 
Should one or more sites be already known or 

tentatively known, this also implies a solution of the 
translation problem of placing a particle (e.g. a virus) 
in the unit cell relative to the crystallographic sym- 
metry axes. 

The effect of crystallographic and 
non-crystallographic symmetry 

Let there be I crystallographic asymmetric units in 
the unit cell and J non-crystallographic asymmetric 
units within one crystallographic asymmetric unit. 
Then let aij be the real component of a given heavy 
atom in the j th  non-crystallographic asymmetric unit 
of the ith crystallographic asymmetric unit. Now the 
feedback method depends on omitting the j = kth 
atom in every crystallographic asymmetric unit and 
computing the phase, q~,,j, based on all the other J - 1 

sites. Hence, 

f#j cos 2~h.xj  cos ~oej 

j # k  

j j # k  

= X E A s , ,  
s t 

where 

J J 

Ast  = ~, ~, aspatq. 
p - - 1  q = l  

p#q 

A similar expression can be derived for the imaginary 
components. That is, all terms along diagonals of 
squares representing interactions between atoms in 
crystallographic units s and t are omitted (Fig. 2). 
These interactions are the Harker peaks in Patterson 
space. The Patterson search method thus differs also 
from the feedback method by including the Harker 
interactions. 

A further difference between the feedback and 
Patterson methods occurs near non-crystallographic 
rotation symmetry axes. If a trial heavy atom is placed 
near an n-fold rotation axis, then it will generate n - 1 
other atoms near the trial position. If one of these is 
omitted to test the effect of feedback, then the feed- 
back test site will automatically contain a large peak 
as it overlaps the assumed heavy-atom site. In a 
Patterson search procedure this situation is avoided 
by omitting the short vectors near the origin. Similar 
exclusions could be used in the feedback method in 
order to avoid the spurious large peaks on rotation 
axes. 

s=l s=2 s=I 

.... . ' , ,  
t--I ..... ~ 

t 

Fig. 2. Interactions used for feedback and Patterson calculations. 
There are I crystallographic units and J non-crystallographic 
units within each of  these. All interactions along the diagonal 
s = t, s + 1 = t, s + 2 = t e tc .  are omitted in the calculations of  the 
feedback criterion (7). In contrast, a Patterson calculation omits 
only the terms along s = t. 
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Factorization to separate rotational and 
translational parameters 

The criteria (3) or (7) must be repeatedly calculated 
for successive trial positions of a heavy atom. Let us 
take, for instance, a virus particle. The trial position 
can be confined to a search volume defining the 
non-crystallographic asymmetric unit as well as 
between physically reasonable external and internal 
radial limits representing the probable thickness of 
the coat protein. However, the particle position needs 
also to be defined. In many cases, such as for the 
solution of the southern bean mosaic virus structure 
(Rayment, Johnson, Suck, Akimoto & Rossmann, 
1978) or the cowpea mosaic virus structure (Johnson, 
private communication), the particle center is fixed 
by a special position. In other cases, such as the 
rhinovirus structure determination (Arnold et al., 
1984), the virus may sit on a rotation axis giving one 
degree of freedom to its motion. In yet other cases, 
the virus position is unconstrained by crystallographic 
symmetry [ e.g. satellite tobacco necrosis virus (Lentz, 
Strandberg, Unge, Vaara, Borell, Fridborg & Petef, 
1976)]. In general, once the particle orientation is 
known there exists a six-dimensional problem when 
locating a heavy-atom site from difference data: 
three heavy-atom parameters and three particle 
(molecular) parameters. A systematic search pro- 
cedure would thus be prohibitively expensive unless 
(as is so often the case) the position of the particle 
center is known or severely limited. However, when 
the search problem is couched in reciprocal space, 
as in (3), (7), (8) and (9) above, it is possible to factor 
out the translational components. 

Let the j th  (purely rotational) non-crystallographic 
symmetry operation be represented by 

x~ =[Cj]x, 
where x is a position vector expressed as fractional 
cell lengths with respect to the particle center. Then, 
if u is the positional vector of the center of the 
'standard' particle in fractional coordinates, the ith 
crystallographic symmetry operator can be represen- 
ted as 

x0 = [ T,](xj + u ) + d ,  

o r  

xm = [  T/]u + [ Ti][ Cj]x +d/, 

where m is the j th non-crystallographic position in 
the ith crystallographic asymmetric unit. Then the 
expression which needs to be evaluated in (3) or (7) 
can be written as 
area, + bmb, = cos (27rh.x,) cos (2"n'h.xm) 

+sin (27rh.x,) sin (27rh.x,,) 

= cos [2"rrh(xm - x,,)] 

= cos {27rh[ ([ Til] - [ Ti2])u + ([ Till[ Cjl] 
- [ T~2][ C~2])x + (d,, -d,2) 1}, 

where il refers to the crystallographic unit of the mth 
atom and i2 refers to the crystallographic unit of the 
nth atom. Similarly, j l  refers to the non-crystallo- 
graphic asymmetric unit of the mth atom and j2 refers 
to the non-crystallographic asymmetric unit of the 
nth atom. Thus, 

a,,,a, + bmb, = cos (2zrh'.u + Oh'), (10) 

where 
h'= h([ T.]  - [  T~2]); (11) 

Oh' = h([ T~,][ Cjl] - [  T~2][ Cj2])x + (d,, + di2). 

Now h' is integral and can be evaluated from the 
known crystallographic operators. Similarly, Oh' can 
be evaluated for a given position u of the chosen 
heavy-atom site relative to the particle center. Hence, 
from (3) or (7), the criterion for a heavy-atom site at 
u can be evaluated as, say, 

which is a Fourier summation that can be readily and 
quickly evaluated for all values of u. 

It is of some interest to examine the values of h' 
from (11). When considering interactions between 
atoms related by non-crystallographic symmetry 
(different j)  but in the same crystallographic asym- 
metric unit or particle (same i), then [ T~I] = [ Ti2] and 
h '=0 .  In this case, Oh,=o=h[T~]([Cj~]-[Cj2])x. 
Thus, the summation (12) can be written as 

self 

+2~h('Aml)h[~COS27r(h'U+Oh') ]. 
c ross  

The self terms (between atoms in the crystallographic 
asymmetric unit) correspond to searching for the self 
vectors around the origin of a Patterson function. The 
cross terms (between crystallographic asymmetric 
units) are additional terms, which modify the self 
terms and correspond to the strengthening of a Patter- 
son search by incorporating the cross vectors between 
particles. Hence, S(u) can be computed without 
adding the cross terms in an attempt to determine the 
heavy-atom sites relative to the particle center when 
the position of the particle center is as yet unknown. 

The effect of a twofold crystallographic axis, say 
along b, would give values of h' as 

EIi ° !)(l ° !tl h'= h 1 - 0 1 

0 0 0 - 

= 2h, O, 21. 
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Thus, the search function would be two dimensional 
since there is no significance to a translation parallel 
to b. 

Computational search procedures 

A program was written for the Cyber 205 supercom- 
puter. The advantage of the supercomputer is the 
vectorization options whereby repetitive operations 
may be speeded greatly. This facility was exceedingly 
important in the structure-factor computation where 

the quantity Y, Y~i#j (aiaj+bibj) has to be computed 
for all atoms in the cell per search point [see (3), (7), 
(8) and (9) above]. For cubic rhinovirus crystals there 
are 240 symmetry (crystallographic and non-crys- 
tallographic)-equivalent points per cell. 

The flow chart of the program is shown in Fig. 3. 
The cell dimensions are used for the orthogonali- 
zation and de-orthogonalization matrices [ a ] and [/3] 
(in the routine RECIP) as defined by Rossmann & 
Blow (1962). Here 

x = [ a ] X  and X=[f l ]x ,  

Input 

Cell dimensions, 
resolution limits 

Orientation of non 
crystallographic symmetry 

operators 

Crystallographic symmetry 
operators 

~,¢ grid intervals 

Structure amplitudes 

Radial limits and 
particleposition to 

define heavy atom search 

Y e s / / / / ' y  

\ 

Program 
Execution Output Within Program 

I I > RECIP ~ orthogonalizing matrices 

NONCRYS ] Non-crystallographic 
I ; / rotation matrices 

SI I , /  / matrices 
-I '  $I I "7-/Setn°:f-c~;*st:lllU;rSaphthin 

I / / asymmetric unit 
/ /  

I Lurrent trial heavy 

List of all N (= I x J) . ~ / /  symmetry[:le%led sites 

I sv 
No 

Compute C or S 

. 1 
t Fourier I Output 
inversion ] 

I 
C, S for ~, ¢, R 

Output 
C, S maximum in Fourier 

for ~, ¢, R 

Fig. 3. Flow chart for heavy-atom search. 
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where X is the position vector of a point within the 
particle with respect to a defined origin (like the 
particle center). The components of X have 
dimensions of length, while x are fractional coordi- 
nates of this point relative to the cell lengths. 

The unique non-crystallographic operator proper- 
ties are provided in terms of the ~b, ~ polar angles 
which a given rotation axis makes together with the 
cell axes and the rotation, K, about this axis. The 
orientations of these axes will have been determined 
perhaps from a rotation function. Thus, for a particle 
with 222 symmetry it will be necessary to read two 
operators, while for an icosahedral particle it will be 
necessary to read four operators. Each operator is 
used in the routine N O N C R  YS to set up the rotation 
matrix [p] given q4 ~ and K (Rossmann & Blow, 
1962). This matrix is then used by the routine 
N O N C R Y S  to operate in turn on itself (e.g. five times 
for K = 72 °) and on the other [p] matrices, producing 
a total of J non-crystallographic rotation matrices of 
the form 

where 

[ c j ]  = [~ ] [p j ] ,  

x =  [ ,~][pj]X. 

The I crystallographic operators ([ T~]x+ di) can then 
be incorporated (in the routine SPGRP) to give I x J 
matrices of the form [ T~][ Ci]. 

It is then necessary to set up a grid, in polar coordi- 
nates $ and ~p, which explores all sites within the 
non-crystallographic asymmetric unit (see the shaded 
area in Fig. 3). This can be done by considering every 
position of a suitable grid in a hemisphere (0 <- ¢ <- 7r, 
0-< ~ < 27r). Each combination of g, and ~ is conver- 
ted into the Cartesian coordinates X = cos ~p sin ¢, 
Y = cos ¢, Z = - s in  ~ sin ~. All non-crystallographi- 
cally-related positions are then generated for each 
¢, q~ position using the matrices computed earlier by 
the routine NONCRYS.  Only those positions of g, 
and ~ are accepted where the first (say) non-crystallo- 
graphic operator also gives the smallest packed quan- 
tity I O t ° ( X + A ) + I O S ( Y + B ) + Z + C ,  where A, B 
and C are suitable biasing constants. The resultant 
positions will represent one non-crystallographic 
asymmetric unit for the given orientation of the non- 
crystallographic operators. 

A list of structure-factor differences is then selected 
from a suitable input tape by the routine GETFIT. 
This includes selection within a suitable resolution 
range, computation of mean differences for sub- 
sequent figure-of-merit calculations etc. The ampli- 
tudes and their indices are stored in arrays (vectors) 
for the structure-factor routine. 

The routine EXPLORE steps through each $, 
position systematically between selected radial limits, 
R, of the heavy-atom position relative to the particle 
center. With the selected position and the earlier 

evaluated matrices, all I x J sites in the unit cell can 
then be calculated. 

The major calculational effort occurs in the routine 
SFACT which evaluates the Fourier terms for (12) 
with respect to a given site (g,, ¢, R) and sums over 
all h reflections. Should it be necessary to explore a 
translation then these coefficients are inverted by a 
Fourier routine before proceeding to the next pro- 
posed heavy-atom site. 

The actual computational times using the 
reciprocal-space search procedure were longer than 
the corresponding Patterson search when applied to 
6 ,~ resolution data for an Au(CN)2 derivative of 
cubic rhinovirus crystals. Furthermore, given the 
present vectorization algorithm, the times would 
increase substantially with increasing resolution. 
Nevertheless, the reciprocal-space method gives far 
greater flexibility as the area of a peak can be covered 
many times using different resolution cutoffs, different 
forms for the coefficients and a variety of reflection 
rejection criteria. Thus, it is much faster to cover a 
few points with different conditions with the 
reciprocal-space method, but it is faster to search the 
whole non-crystallographic asymmetric unit with the 
Patterson-search technique. 

A typical time for the cubic rhinovirus difference 
search was 2' per point using 22 354 reflections to 6 A 
resolution. A tenfold improvement, concomitant with 
an improvement of the results, could be obtained by 
selecting only the large-term differences. The 
improved results were due to the omission of error 
implicit in the smaller differences. 

Results 

The difference between the Patterson (3) and feed- 
back (7) criteria was tested in an application to cow- 
pea mosaic virus (CpMV). The data were kindly 
supplied by Professor Jack Johnson of Purdue Uni- 
versity. He and his colleagues have recently deter- 
mined the heavy-atom site for an Hg derivative of 
CpMV crystals using the classical Patterson search 
method. The derivative turned out to have a single-site 
substitution of exceptional quality. Hence, the data 
were used for testing the procedure (Table 1). The 
crystals of CpMV are cubic 123 (White & Johnson, 
1980) with a = 315.0 A. There are two particles per 
cell with each particle situated on a 23 special posio- 
tion. Data were selected between 15.0 and 5.5 A 
resolution using only reflections with IFI>_2o-(F). 
There were then, in total, 8717 independent significant 
reflections. Table 1 shows the extraordinarily clean 
search result. However, there appears to be little 
difference whether the A 2 or Izaml coefficients were 
used in the procedure. Application to the Au(CN)2 
derivatives of the human rhinovirus 14 data will be 
given in detail in a subsequent publication (Arnold, 
Vriend, Luo, Griffith, Kamer, Erickson, Johnson & 
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Table 1. Cowpea mosaic virus peak exploration using 
the feedback search method 

The p e a k  values ,  no rmal i zed  to a m a x i m u m  value o f  100, are shown  
for  the search  posi t ions  given b y  the ~, ~p and  R values.  The  terms 
used  for  eva lua t ing  the search  funct ion  are descr ibed in the text. 

(a) A 2 coefficients 

R = 1 0 0 ~ .  

¢ ~  -78 -77  -76  

~=84 7 14 14 9 41 39 11 25 19 
85 13 16 11 32 100 65 5 6 4 
86 11 12 0 31 62 34 9 6 4 

(b) Mini coefficients 
R = 1 0 0 A  

¢ ~  -78  -77 -76  

~=84 13 10 17 9 39 39 14 26 20 
85 13 15 16 32 100 63 7 3 16 
86 11 10 0 29 53 34 9 7 6 

R = 1 1 0 / ~  R=120  

-78 -77 -76 -78 -77 -76  

R=110 ~ R=120.A 
-78 -77 -76 -78 -77 -76  

Table 2. Effects of differences of various sizes 

Cont r ibu t ions  to the peak  at  ~b = 85 °, tp = - 7 7  °, R = 110 ,A in the 
C p M V  h e a v y - a t o m  search (Table  1 a )  are divided into c o m p o n e n t s  
d e p e n d e n t  on  the  size o f  the differences. 

Size o f  difference n 

0.0-0.25 1484 
0.25-0.50 1418 
0.50-1.00 2260 
1-00-2"00 2606 
2"00 and larger 945 

Cont r ibu t ion  
to sum 

-0.1 
-0 .6  
-2 .2  
17.5 
85"4 

Total 8717 100.0 

Note: Size differences are given as a fraction of the r.m.s, difference for all 
the observed reflections, n is the number of reflections in each range. 

Rossmann, in preparation) relating to the complete 
structure determination of that virus (Rossmann et 
al., 1985). 

Tests were conducted on the effect of excluding 
the small differences from the calculations (Table 2). 
The initial tests were conducted on the heavy-atom 
peak shown for CpMV in Table 1. The differences 
were divided into ranges as a fraction of their size 
relative to the r.m.s, difference, (A), of all observed 
reflections. It is clear that only the reflections greater 
than I(A) made useful contributions to the peak. 
Although only the center of the peak is shown in 
Table 2, the same observations were valid for points 
off the central peak position. Hence at best only 40% 
of the reflections gave useful information, whereas 
the other 60% of the data actually created interfer- 
ence. Similar observations were apparent for the 
Au(CN)2 sites in human rhinovirus 14. In this case, 
however, only the 16% largest differences contributed 
to the peak. Thus by omitting 80 to 90% of the data, 
in a manner analogous to the 'big-term' rotation func- 
tion (Tollin & Rossmann, 1966), the speed of the 
program could be vastly,improved, while at the same 
time the results were cleaner. 

Concluding remarks 

The Patterson search procedure for finding heavy- 
atom sites for an isomorphous heavy-atom derivative 
is equivalent to using a feedback procedure based on 
phases from presumed sites and testing for the 
appearance of a non-crystallographically-related site. 
The use of self and cross vectors in the Patterson 
search method has its analogy in reciprocal space. 
The procedure can be carded out in reciprocal space 
with greater convenience of the precise coefficients 
and resolution ranges to be tested, yielding potentially 
more accurate results. However, the feedback search 
method is several hundred times slower than the 
Patterson search method given the present computer 
algorithms. A reasonable strategy is to perform an 
exhaustive Patterson search to locate promising 
heavy-atom sites and then to explore these using 
different conditions with the feedback search method. 

We are grateful to Dr Jack Johnson for permitting 
us to use his CpMV data to test the reciprocal-space 
search program. The work was supported by grants 
from the National Institutes of Health and the 
National Science Foundation to MGR and a Damon 
Runyon-Walter Winchell postdoctoral fellowship 
to EA. 

APPENDIX 

Computation of figures of merit 

Let us assume that IF~I<IFHI (Fig. la).  Then lack 
of closure when a = ¢ + 7r is 

e, =I(FN + kf)l - IF~l 

- -  k l f l - l A I ,  

where k is the scale factor to place the calculated 
heavy-atom structure factor ]f[ onto the same 
relative scale as the observed differences lal and 
A _-IF~,l- I FNI. Thus, the phase probability for the 
phase (¢) is given by 

PI(~) oc exp [-(e2/2E2)], 

where E is the standard error for the lack of closure 
and can be calculated as (~h A:/h) 1/2" Similarly, 
when a = ~p 

-klfl -lAI 
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and 

P2(¢ + ¢r) oc exp [-(e2/2E2)]. 

Similar expressions can be derived for the case shown 
in Fig. l(b).  

Hence, if all phase probabilities other than those 
at ~ and ~ + ~r are neglected, 

m = ( P, - P2)/ ( PI + P2). 

The quantities P1 and P2 can be computed provided 
there exists a knowledge of the scale factor k. This 
can be estimated by assuming 

k ( f ) =  2'/2(A), 

where ( ) signifies mean quantities. Now (f)  = ju2 if 
there are J atoms of unit weight in the cell. Hence, 

k=(A)(2 /J)  '/:. 

It follows that if, for a particular reflection, f =  0, 
then P~ = P: and m =0.  Similarly, if IAI = 0, then 
P~ = P2 and m = 0. Indeed, the expression for m is en- 
tirely symmetrical between klf[ and ]A]. The figure of 
merit is, therefore, small whenever k[fl or IAI are 
small compared to (A). 
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Abstract 
If intensities of reflexion have one or other of the 
ideal distributions [Wilson (1949). Acta Cryst. 2, 318- 
320], the sum of n such intensities has a gamma (y) 
distribution with parameter n (acentric) or n/2 (cen- 
tric), and the ratio of two such sums has a beta (/3) 
distribution. These distributions are applied to (i) 
intensities normalized to the ideal average 2 ;  (ii) 
intensities normalized to the local average (I); (iii) 
ratios used for scaling. Bias in scaling is discussed, 
and certain results are obtained for non-ideal distribu- 
tions. Expressions are obtained for the variance of 
the traditional reliability index R for both ideal distri- 
butions; these have applications in certain methods 
of structure determination [Rabinovich & Shakked 
(1984). Acta Cryst. A40, 195-200]. 

0108-7673/86/050334-06501.50 

1.1. Notation 

I. Introduction 

In several crystallographic contexts it is necessary t o  
consider sums like 

and ratios like 

J.-- ~ Gi, (1) 
i=l 

m 
K , . =  Y~ Hi, (2) 

i=l 

S.,m=J./Km, (3) 

where Gi and Hi are the intensities of sets of 
reflexions. Similar expressions where Gi and H, are 
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